Estructura factorial de las Escalas de Bienestar Psicológico de Ryff en estudiantes universitarios

  • Carlos Freire Grupo de Investigación en Psicología Educativa, Universidad de A Coruña, A Coruña, España
  • María del Mar MarFerradás Grupo de Investigación en Psicología Educativa, Universidad de A Coruña, A Coruña, España
  • José Carlos Núñez Departamento de Psicología, Universidad de Oviedo, Oviedo, España
  • Antonio Valle Grupo de Investigación en Psicología Educativa, Universidad de A Coruña, A Coruña, España

Resumen

En el presente trabajo se analiza la estructura factorial de las Escalas de Bienestar Psicológico de Ryff en estudiantes universitarios. Participaron en el estudio 1,402 sujetos, que fueron distribuidos aleatoriamente en 2 submuestras homogéneas independientes: una de calibración y una de validación. Diversos modelos teóricos propuestos por la investigación previa fueron objeto de análisis factorial confirmatorio. Nuestros resultados indican que el modelo de 4 factores de primer nivel (autoaceptación, dominio del entorno, propósito en la vida y crecimiento personal) es el que muestra mejores indicadores de ajuste a los datos empíricos. Se discuten los resultados a la luz de las implicaciones teóricas y empíricas de estos hallazgos.

Citas

Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103, 1---18. http://dx.doi.org/ 10.1037/a0021017

Alonso, J. (2012). Psicología. Bachillerato. Madrid: McGraw-Hill.

Anderson-Inman, L., & Ditson, L. (1999). Computer based concept mapping: A tool for negotiating meaning. Learning and Leading with Technology, 26, 6---13.

Anderson-Inman, L., & Zeitz, L. (1993). Computer-based concept mapping: Active studying for active learner. The Computer Teacher, 6---8, 10---11.

Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.

Ausubel, D. P. (2002). Adquisición y retención del conocimiento. Una perspectiva cognitiva. Barcelona: Paidós.

Azevedo, R., Witherspoon, A., Chauncey, A., Burkett, C., & Fike, A. (2009). MetaTutor: A metacognitive tool for enhancing selfregulated learning. In R. Pirrone, R. Azevedo, & G. Biswas (Eds.), Proceedings of the AAI fall symposium on cognitive and metacognitive educational systems. Menlo Park, CA: AAAI Press, http://dx.org/995-4214-1-PB.pdf

Bai, X., Black, J. B., & Vitale, J. (2007). REAL: Learn with the assistance of a reflective agent. Agent-based systems for human learning conference, Hawaii.

Black, J. B. (1992). Types of knowledge representation. New York: CCTE Report Teachers College, Columbia University.

Cañas, A. (2004). CmapTools: A knowledge modelling and sharing environment. pp. 125---133. Pamplona: UPN., http://dx.doi.org/cmc.ihmc.us/papers/cmc2004-283.pdf

Chang, K., Sung, Y., & Chen, S. (2001). Learning through computerbased concept mapping with scaffolding aid. Journal of Computer Assisted Learning, 17, 21---33.

Charsky, D., & Mims, C. (2008). Integrating commercial off-theshelf video games into school curriculums. TechTrends, 52, 38---44.

Charsky, D., & Ressler, W. (2011). Games are made for fun: Lessons on the effect of concept maps in the classroom use of computer games. Computers & Education, 56, 604---615.

Crespi, L. P. (1942). Quantitative variation of incentive and performance in the white rat. The American Journal of Psychology, 55, 467---517.

Davis, J. M., Leelawong, K., Belynne, K., Bodenheimer, R., Biswas, G., Vye, N., et al. (2003). Intelligent user interface design for teachable agent systems. In ICIUI (pp. 26---33), doi:10.1.1.14.8457.pdf.

Del Bimbo, A., & Vicario, E. (1995). Specification by-example of virtual agents’ behavior. IEEE Transactions on Visualization and Computer Graphics, 1, 350---360.

Dunlosky, J., & Metcalfe, J. (2008). Metacognition. London: SAGE.

Finke, R. A. (1989). Interpretation of imagery-induced McCollough effects. Perception & Psychophysics, 30, 94---95.

Forbus, K., & Gentner, D. (1997). Qualitative mental models: Simulations or memories? In Proceedings of the 11th workshop on qualitative reasoning (pp. 1---8).

Gentner, D., & Stevens, A. (1983). Introduction. In D. Gentner, & A. Stevens (Eds.), Mental models (pp. 1---6). Hillsdale, NJ: LEA.

Glynn, S. M., Yeany, B. K., & Britton, R. H. (Eds.). (1991). The psychology of learning science. London: Routledge.

González Marqués, J., & Pelta, C. (2013). PSICO-A: A computational system for learning psychology. International Journal of Modern Education and Computer Science, 5, 10. http://dx.doi.org/ 10.5815/ijmecs.2013.10.01

Greenfield, P. M. (2010). Video games revisited. In R. van Eck (Ed.), Gaming and cognition: Theories and perspectives from the learning sciences (pp. 1---21). Hershey, PA: IGI Global.

Hagemans, M. G., van der Meij, H., & de Jong, T. (2013). The effects of a concept map-based support tool on simulationbased inquiry learning. Journal of Educational Psychology, 105, 1---24.

Hull, C. L. (1952). A behavior system: An introduction to behavior theory concerning the individual organism. North Haven, CT: Yale University Press.

Jonassen, D., & Land, S. (2012). Theoretical foundations of learning environments. London: Routledge.

Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331, 772---775. http://dx.doi.org/10.1126/ science.1199327

Lerdorf, R., Tatroe, K., & MacIntyre, P. (2006). Programming PHP (2nd ed.). New York: O’Reilly Media.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning. American Psychologist, 59, 14---19. http://dx.doi.org/10.1037/0003-066X.59.1.14

Mayor, J., Suengas, A., & González Marqués, J. (1993). (Metacognitive strategies) Estrategias metacognitivas. Madrid: Síntesis.

Novak, J. (1977). A theory of education. Ithaca, NY: Cornell University Press.

Novak, J. (1998). Learning, creating, and using knowledge: Concept maps as facilitative tools for schools and corporations. Mahwah, NJ: LEA.

Plotnick, E. (1997). Concept mapping: A graphical system for understanding the relationship between concepts (report No. EDO-IR-97-05). Syracuse, NY: Center for Science and Technology (ERIC Document Reproduction Service No. ED407938).

Roediger, H. L., Agarwal, P. K., McDaniel, M. A., & McDermott, K. (2011). Test-enhanced learning in the classroom: Long-term improvements from quizzing. Journal of Experimental Psychology: Applied, 17, 382---395.

Royer, R., & Royer, J. (2004). Comparing hand drawn and computer generated concept mapping. Journal of Computers in Mathematics and Science Teaching, 23(1), 67---81.

Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33, 569---600.

Schau, C., Mattern, N., Zeilik, M., Teague, K. W., & Weber, R. J. (2001). Select-and-fill-in concept map scores as a measure of students’ connected understanding of science. Educational & Psychology Measurement, 61(1), 136---158.

Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. Journal of Experimental Psychology: Human Learning & Memory, 4, 592---604, http//dx.doi.org/ worthylab.tamu.edu/Courses files/Generation %20EffectSlamecka

Thomas, R., & Neilson, I. (1995). Harnessing simulations in the service of education: Interact simulation environment. Computers & Education, 25, 21---29.

Zeitz, L., & Anderson-Inman, L. (1992). The effects of computerbased formative concept mapping on learning high school science. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.
Sección
Artículos