Análisis factorial confirmatorio de Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM) en escolares de primer curso de Primaria

  • Juan E. Jiménez Universidad de La Laguna (España)
  • Sara del Cristo de León Universidad de La Laguna (España)

Resumen

En este estudio se pretende poner a prueba un modelo hipotético para profundizar en la dimensionalidad del sentido numérico utilizando la técnica del Análisis Factorial Confirmatorio (AFC). Se ha llevado a cabo un estudio longitudinal con una muestra de 176 alumnos de primer curso de Educación Primaria de las Islas Canarias, a los que se les administró el instrumento Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM) en tres momentos diferentes del curso escolar. El IPAM es un instrumento CBM compuesto por tres medidas alternativas o paralelas (A, B y C) que tratan de medir una misma estructura latente (i.e., sentido numérico). Estas medidas se aplican en tres momentos diferentes a lo largo del año escolar (i.e., noviembre, febrero, mayo). Su principal objetivo es el cribado universal y la evaluación del progreso de aprendizaje en matemáticas del alumnado de educación primaria mediante la evaluación de la fluidez en la resolución de diferentes tareas (i.e., comparación de magnitudes, operaciones de un dígito, operaciones de dos dígitos, series numéricas, y valor de posición). La fluidez es medida contabilizando el número de respuestas correctas que da el alumno en un tiempo dado. Los resultados del AFC confirman un buen ajuste del modelo propuesto para los distintos momentos de medida.

Citas

Andrews, P., y Sayers, J. (2015). Identifying opportunities for grade one children to acquire foundational number sense: Developing a framework for cross-cultural classroom analyses. Early Childhood Education Journal, 43, 257–267.

Aubrey, C., Dahl, S., y Godfrey, R. (2006). Early mathematics development and later achievement: Further evidence. Mathematics Education Research Journal, 18(1), 27−46.

Aunio, P., y Niemivirta, M. (2010). Predicting children’s mathematical performance in grade one by early numeracy. Learning and Individual Differences, 20(5), 427–435.

Baker, S., Gersten, R., y Lee, D. (2002). A synthesis of empirical research on teaching mathematics to low-achieving students. The Elementary School Journal, 103(1), 51-73.

Barth, H., Beckmann, L., y Spelke, E.S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior instruction. Developmental Psychology, 44(5), 1466-1477.

Bruer, J.T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26 (8), 4-16.

Clarke, B., Baker, S., Smolkowski, K., y Chard, D.J. (2008). An analysis of early numeracy curriculum-based measurement. Examining the role of growth in student outcomes. Remedial and Special Education, 29(1), 49-57.

Clarke, B., y Shinn, M.R. (2004). A preliminary investigation into the identification and development of early mathematics curriculum-based measurement. School Psychology Review, 33(2), 234-248.

Conderman, G., Jung, M., y Hartman, P. (2014). Subitizing and early mathematics standards: A winning combination. Kappa Delta Pi Record, 50(1), 18-23.

Dehaene, S., y Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83-120.

Dehaene, S., Piazza, M., Pinel, P., y Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychoy, 20, 487-506.

Foegen, A., Jiban, C., y Deno, S. (2007). Progress monitoring measures in mathematics. A review of the literature. The Journal of Special Education, 4(2), 121-139.

Fornell, C., y Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18(1), 39-50.

Fuchs, L.S., y Fuchs, D. (1986). Effects of systematic formative evaluation: A meta-analysis. Exceptional Children, 53(3), 199-208.

Geary, D. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23–27.

Gersten, R., y Chard, D. (1999). Number Sense: Rethinking arithmetic instruction for students with mathematical disabilities. The Journal of Special Education, 33(1), 18-28.

Gersten, R., Jordan, N.C., y Flojo, J.R. (2005). Identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 293-304.

Griffin, S. (2004). Building number sense with number worlds: a mathematics program for young children. Early Childhood Research Quarterly, 19, 173-180.

Ivrendi, A. (2011). Influence of self-regulation on the development of children’s number sense. Early Childhood Education Journal, 39(4), 239–247.

Jiménez, J.E., y de León, S.C. (2016). Indicadores de progreso de aprendizaje en matemáticas (IPAM). Universidad de La Laguna.

Jordan, N.C., Kaplan, D., Locuniak, M.N., y Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice, 22(1), 36-49.

Jordan, N.C., Kaplan, D., Oláh, L.N., y Locuniak, M.N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77(1), 153-175.

Jordan, N., y Levine, S. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15(1), 60–68.

Jöreskog, K., y Sorbom, D. (1996-2001). LISREL 8: User’s Reference Guide. Illinois: Scientific Software International, Lincolnwood.

Jung, M., Hartman, P., Smith, T., y Wallace, S. (2013). The effectiveness of teaching number relationships in preschool. International Journal of Instruction, 6 (1), 165-178.

Kelley, B., Hosp, J.L., y Howell, K.W. (2008). Curriculum-based evaluation and math. An overview. Assessment for Effective Intervention, 33(4), 250-256.

Kline, R.B. (2005). Principles and practice of structural equation modeling (2nd ed.). Nueva York, NY: Guilford Press.

Kolkman, M.E., Kroesbergen, E.H., y Leseman, P.P.M. (2013). Early numerical development and the role of nonsymbolic and symbolic skills. Learning and Instruction, 25, 95–103.

LeFevre, J.A., Fast, L., Skwarchuk, S.L., Smith-Chant, B.L., Bisanz, J., Kamawar, D., y Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81, 1753–1767.

Lembke, E., y Foegen, A. (2009). Identifying early numeracy indicators for kindergarten and firstgrade students. Learning Disabilities Research & Practice, 24, 12–20.

Mazzocco, M.M., y Thompson, R.E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research & Practice, 20(3), 142-155.

Nieder, A., y Dehaene, S. (2009). Representation of number in the brain. Annual Review in Neuroscience, 32, 185-208.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCATE.

National Mathematics Advisory Panel (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: Department of Education.

Sasanguie, D., Göbel, S.M., Moll, K., Smets, K., y Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418–431.

Sood. S., y Jitendra, A.K. (2007). A comparative analysis of number sense instruction in reformbased and traditional mathematics textbooks. The Journal of Special Education, 41(3), 145-157.

Stecker, P.M., Fuchs, L.S., y Fuchs, D. (2005). Using curriculum-based measurement to improve student achievement: Review of research. Psychology in the Schools, 42(8), 795- 819.

Xu, F., y Arriaga, R.I. (2007). Number discrimination in 10-month-old infants. British Journal of Developmental Psychology, 25, 103-108.
Sección
Artículos

Palabras clave

Sentido numérico; educación primaria; matemáticas; análisis factorial confirmatorio; medida basada en el currículo